NMSU MATH PROBLEM OF THE WEEK

Solution to Problem 6
Fall 2023

Problem 6

If the area of the semi disk is 25 , then what is the area of its circumscribing quarter disk? Justify your answer.

Solution. First, we make a few constructions as shown in the diagram below:

Observe that ABCD is a square, and therefore in $\triangle \mathrm{ABE}$,
(i) $\angle \mathrm{ABE}$ is 90°,
(ii) $\mathrm{AB}=\mathrm{r}$ (radius of the semi disk),
(iii) $\mathrm{AE}=\mathrm{R}$ (radius of the quarter disk), and
(iv) $\mathrm{BE}=2 \mathrm{r}$.

Thus, by using Pythagorus theorem we get $\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{r}^{2}+(2 \mathrm{r})^{2}=\mathrm{R}^{2}=\mathrm{AE}^{2}$, or equivalently $\mathrm{R}^{2}=5 \mathrm{r}^{2}$. We are given that $\frac{1}{2} \pi \mathrm{r}^{2}=25$, and therefore,

Area of the quarter disk $=\frac{1}{4} \pi \mathrm{R}^{2}=\frac{5}{4} \pi \mathrm{r}^{2}=\frac{10}{4}\left(\frac{1}{2} \pi \mathrm{r}^{2}\right)=\frac{10}{4}(25)=\frac{125}{2}=62.5$.

